
Parallel Hierarchical Affinity Propagation with
MapReduce

Dillon Mark Rose∗, Jean Michel Rouly†, Rana Haber‡, Nenad Mijatovic§, Adrian M. Peter¶
∗Computer Science Department, Florida Institute of Technology, Melbourne, Florida; Email: drose2010@my.fit.edu

†Computer Science Department, George Mason University, Fairfax, Virginia; Email: jrouly@gmu.edu
‡Mathematical Sciences Department, Florida Institute of Technology, Melbourne, Florida; Email: rhaber2010@my.fit.edu
§Electrical Engineering Department, Florida Institute of Technology, Melbourne, Florida; Email: nmijatov2005@my.fit.edu

¶Engineering Systems Department, Florida Institute of Technology, Melbourne, Florida; Email: apeter@fit.edu

Abstract—The accelerated evolution and explosion of the
Internet and social media is generating voluminous quantities
of data (on zettabyte scales). Paramount amongst the desires to
manipulate and extract actionable intelligence from vast big data
volumes is the need for scalable, performance-conscious analytics
algorithms. To directly address this need, we propose a novel
MapReduce implementation of the exemplar-based clustering
algorithm known as Affinity Propagation. Our parallelization
strategy extends to the multilevel Hierarchical Affinity Propaga-
tion algorithm and enables tiered aggregation of unstructured
data with minimal free parameters, in principle requiring only
a similarity measure between data points. We detail the linear
run-time complexity of our approach, overcoming the limiting
quadratic complexity of the original algorithm. Experimental
validation of our clustering methodology on a variety of synthetic
and real data sets (e.g. images and point data) demonstrates
our competitiveness against other state-of-the-art MapReduce
clustering techniques.

Index Terms—MapReduce, Cluster, Affinity Propagation, Hi-
erarchical Affinity Propagation, Hadoop

I. INTRODUCTION

In 2010, big data was growing at 2.5 quintillion [1] bytes per

day. This overwhelming volume, velocity, and variety of data

can be attributed to the ubiquitously spread sensors, perpetual

streams of user-generated content on the web, and increased

usage of social media platforms—Twitter alone produces 12

terabytes of tweets every day. The sustained financial health

of the world’s leading corporations is intimately tied to their

ability to sift, correlate, and ascertain actionable intelligence

from big data in a timely manner. These immense com-

putational requirements have created a heavy demand for

advanced analytics methodologies which leverage the latest

in distributed, fault-tolerant parallel computing architectures.

Among a variety of choices, MapReduce has emerged as

one of the leading parallelization strategies, with its adoption

rapidly increasing due to the availability of robust open source

distributions such as Apache Hadoop [2]. In the present work,

we develop a novel MapReduce implementation of a fairly

recent clustering approach [3], and demonstrate its favorable

performance for big data analytics.1

Clustering techniques are at the heart of many analytics

solutions. They provide an unsupervised solution to aggregate

1Implementation available at http://research2.fit.edu/ice/?q=software

similar data patterns, which is key to discovering meaningful

insights and latent trends. This becomes even more necessary,

but exponentially more difficult, for the big data scenario.

Many clustering solutions rely on user input specifying the

number of cluster centers (e.g. K-Means clustering [4] or

Gaussian Mixture Models [5]), and biasedly group the data

into these desired number of categories. Frey et al. [6]

introduced an exemplar-based clustering approach called

Affinity Propagation (AP). As an exemplar-based clustering

approach, the technique does not seek to find a mean for

each cluster center, instead certain representative data points

are selected as the exemplars of the clustered subgroups. The

technique is built on a message passing framework where

data points “talk” to each other to determine the most likely

exemplar and automatically determine the clusters, i.e. there

is no need to specify the number of clusters a priori. The

sole input is the pairwise similarities between all data points

under consideration for clustering—making it ideally suited

for a variety of data types (categorical, numerical, textual,

etc.). A recent extension of the AP clustering algorithm is

Hierarchical Affinity Propagation (HAP) [3], which groups

and stacks data in a tiered manner. HAP only requires the

number of hierarchy levels as input and the communication

between data points occurs both within a single layer and

up and down the hierarchy. To date, AP and HAP have

been mainly relegated to smaller, manageable quantities of

data due to the prohibitive quadratic run time complexity.

Our investigations will demonstrate an effective parallelization

strategy for HAP using the MapReduce framework, for the first

time enabling applications of these powerful techniques on big

data problems.

First introduced by Google [7], the MapReduce framework

is a programming paradigm designed to facilitate the distri-

bution of computations on a cluster of computers. The ability

to distribute processes in a manner that takes the computa-

tions to the data is key when mitigating the computational

cost of working with extremely large data sets. The parallel

programming model depends on a mapper phase that uses key-

value identifiers for the distribution of data and subsequent

independent executions to generate intermediate results. These

are then gathered by a reducing phase to produce the final

output key-value pairing. This simple, yet widely applicable

2014 IEEE International Conference on Cloud Engineering

978-1-4799-3766-0/14 $31.00 © 2014 IEEE

DOI 10.1109/IC2E.2014.42

367

parallelization philosophy has empowered many to take ma-

chine learning algorithms previously demonstrated only on

“toy data” and scale them to enterprise-level processing [8]. In

this same vein, we adopted the most popular open source im-

plementation of the MapReduce programming model, Apache

Hadoop, to develop the first ever parallelized extension of

HAP, which we refer to as MapReduce Hierarchical Affinity

Propagation (MR-HAP). This allows efficient fault-tolerant

clustering of big data, and more importantly, improves the

run time complexity to potentially linear time (given enough

machines).

A. Relevant Work

To handle the explosion of available data, there is now a vast

amount of research in computational frameworks to efficiently

manage and analyze these massive information quantities.

Here we focus on the MapReduce framework [1], [9], [10],

[11] for faster and more efficient data mining, covering the

most relevant to our approach.

Among the state of the art MapReduce clustering algorithms

is Hierarchical Virtual K-means (HVKM), which was imple-

mented by Nair et al. [12]. HVKM uses cloud computing

to handle large data sets, while supporting top to bottom

hierarchies or a bottom to top approach. Since it derives

its roots from K-means, HVKM requires one to specify the

number of clusters. Our MR-HAP implementation does not

require presetting the number of required clusters; it instead

organically and objectively discovers the data partitions.

In Wu et al. [13], the authors propose to parallelize AP on

the MapReduce framework to cluster large scale E-learning re-

sources. The parallelization happens on the individual message

level of the AP algorithm. We perform a similar parallelization

but significantly go beyond and allow for hierarchical cluster-

ing, which enables a deeper understanding of the data’s se-

mantic relationships. In addition, our development is designed

to work on a variety of data sources; thus, our experiments

will showcase results on multiple data modalities, including

images and numerical data, as shown in § IV.

The rest of this paper is organized as follows. In the next

section, §II, we detail the non-parallel HAP algorithm. §III
discusses the MapReduce paradigm and the implementation

details for these algorithms. The experimental validations pro-

vided in §IV demonstrate our favorable performance against

another clustering algorithm which is readily available in the

open source project Apache Mahout [14]. Finally, we conclude

with a summary of our efforts and future recommendations.

II. HIERARCHICAL AFFINITY PROPAGATION

AP is a clustering algorithm introduced by Frey et al.[6]

motivated by the simple fact that given pairwise similarities

between all input data, one would like to partition the set

to maximize the similarity between every data point and its

cluster’s exemplar. Recall that an exemplar is an actual data

point that has been selected as the cluster center. As we will

briefly discuss, these ideas can be represented as an algorithm

in a message passing framework. In the landscape of clustering

methodologies, which includes such staples as K-means [4],

K-medoids [15], and Gaussian Mixture Models [5], predomi-

nantly all methods require the user to input the desired number

of cluster centers. AP avoids this artificial segmentation by

allowing the data points to communicate amongst themselves

and organically give rise to a partitioning of the data. In many

applications an exemplar-based clustering technique gives each

cluster a more representative and meaningful prototype for the

center, versus a fabricated mean.

HAP, introduced by [3], extends AP to allow tiered cluster-

ing of the data. The algorithm starts by assuming that all data

points are potential exemplars. Each data point is viewed as a

node in a network connected to other nodes by arcs such that

the weight of the arcs sij describes how similar the data point

with index i is to the data point with index j. HAP takes as

input this similarity matrix where the entries are the negative

real valued weights of the arcs. Having the similarity matrix

as the main input versus the data patterns themselves provides

an additional layer of abstraction—one that allows seamless

application of the same clustering algorithm regardless of

the data modality (e.g.text, images, general features, etc.).

The similarity can be designed to be a true metric on the

feature space of interest or a more general non-metric [6].

The negative of the squared Euclidean distance if often used

as a metric for the similarities. The diagonal values of the

similarity matrix, sjj , are referred to as the “preferences”

which specify how much a data point j wants to be an

exemplar. Since the similarity matrix entries are all negative

values, −∞ < sij ≤ 0, sjj = 0 implies data point j has high

preference of being an exemplar and sjj ≈ −∞ implies it

has very low preference. In some cases, as in [6], [3], [16],

the preference values are set using some prior knowledge;

for example, uniformly setting them to the average of the

maximum and minimum values of sij , or by setting them to

random negative constants. Through empirical verification, we

experienced better performance with randomizing the prefer-

ences and adopt this approach for most of our experiments.

Once the similarity matrix is provided to the HAP algorithm,

the network of nodes (data points) recursively transmits two

kinds of intra-level messages between each node until a good

set of exemplars is chosen. The first message is known as the

“responsibility” message and the second as the “availability”

message. The responsibility messages, ρlij , are sent at level l
from data point i to data point j portraying how suitable node

i thinks node j is to be its exemplar. Similarly, availability

messages, αl
ij , are sent at level l from data point j to i,

indicating how available j is to be an exemplar for data point i.
The responsibility and availability update equations are given

in Eq. 1 and Eq. 2, respectively.

ρl>1
ij ← slij +min[τ li ,− max

ks.t.k �=j

{
αl
ik + slik

}
] (1)

αl<L
ij ← min

{
0, clj + φl

j + ρljj +
∑

ks.t.k/∈{i,j}
max{0, ρlkj}

}
(2)

αl<L
jj ← clj + φl

j +
∑

ks.t.k �=j

max{0, ρlkj} (3)

368

where L is the number of levels defined by the user and

l ∈ {1, · · · , L}. Eq. 3 is the self-availability equation which

reflects the accumulated positive evidence that j can be an

exemplar. The self-responsibility messages are updated the

same way as the responsibility messages. To avoid numerical

oscillation, the responsibility and availability messages are

dampened by λ ∈ (0, 1) at every level l.
HAP also introduces two inter-level messages. These mes-

sages are denoted by τ in Eq. 4, which receives messages

from the lower level and φ in Eq. 5, which receives messages

from the upper level. At every level, the cluster preference cli
is updated using Eq. 6.

τ l+1
j = clj + ρljj +

∑
ks.t.k �=j

max(0, ρlkj) (4)

φl−1
i = max

k
(αl

ik + slik) (5)

cli ← max
j

(αl
ij + ρlij) (6)

A variety of strategies can be employed to update the

similarity matrix slij to vary level-wise. We have achieved

good results by simply taking into consideration the cluster

relationship of the previous level:

sl+1
ij = slij + κ max

js.t.j �=i
[αl

ij + ρlij] (7)

where κ is a constant value within [0,1]. This updates the rela-

tion between data points in level l+1 by negatively increasing

the similarity between points that belong to different clusters

in level l and enforces the similarity between points that fall

under the same cluster in level l.
After all messages have been sent and received, the cluster

assignments are chosen, at every level, based on the maximum

sum of the availability and responsibility messages as in Eq.

8. These cluster assignments can be used to extract the list of

exemplars.

eli ← argmax
j
{αl

ij + ρlij} (8)

These net message exchanges seek to maximize the cost

of correctly labeling a point as an exemplar and gathering

its representative members (a cluster). In Algorithm 1, we

detail the pseudo-code implementation of HAP. Given this

description of HAP, we now proceed to discuss MapReduce

and our novel parallelization strategy.

III. MAPREDUCE HIERARCHICAL AFFINITY PROPAGATION

The MapReduce programming model [7] is an abstract pro-

gramming paradigm independent of any language that allows

the processing workload of the implemented algorithm to be

balanced over separate nodes within a computer cluster. Our

overarching MapReduce approach for HAP was motivated by

viewing the major update equations for HAP (see Algorithm

1) as tensorial mathematical constructs [17]. One can simply

view these tensorial constructs as two or three dimensional

matrices. The HAP algorithm can be parallelized because all

the updates to the various tensors require only a subset of the

information provided. Therefore, the updates can be split up

Algorithm 1 Hierarchical Affinity Propagation

1: Input: Similarity (S), Levels (L), Iterations, and λ
2: Initialize: α = 0, ρ = 0, τ =∞, φ = 0, c = 0, e = 0
3: for iter = 1→ Iterations do
4: for l = 1→ Levels do
5: Update ρlij (eq. 1) & Dampen ρl

6: Update αl
ij (eq. 2 & 3) & Dampen αl

7: Update τ lj , φl
j & clj (eq. 4, 5 & 6)

8: Optional Update slij (eq. 7)

9: end for
10: end for
11: for l = 1→ Levels do
12: Update elj (8)

13: end for

into different jobs and each job will receive the subset of data

needed to evaluate the update.

To achieve a balance between computational partitioning

and efficient formatting for data representation on the Hadoop

Distributed Filesystem (HDFS), all the data is constructed as

three dimensional tensors. In support of the fault tolerance

aspect of MapReduce, it is important to retain a copy at all

times of the S, α, ρ, c, τ , and φ tensors. (Recall S, α,

ρ, and c refer to the Similarity, Availability, Responsibility,

and Cluster Preferences, respectively.) To this end, even those

tensors not required by a job must be passed directly through

to the next job. For the S, α, and ρ tensors, the dimensions

represent the nodes, the exemplars, and the levels. Since there

are N nodes, N possible exemplars, and L levels, these tensors

contain LN2 values. For the c, τ , and φ tensors, the first

two dimensions represent the index and level and the depth

dimension has length one. Since there are N indices and L
levels, these tensors contain LN values. In the sequel, for the

S, α, and ρ tensors, the node dimension will be iterated by

i, the exemplar dimension will be iterated by j, and the level

dimension iterated by l. As for the c, τ , and φ tensors, the

index dimensions will be iterated by both i and j.

With these underlying structures, data must be decon-

structed and represented as (key,value) pairs for use in the

MapReduce framework. There are two formats for storing the

information: node-based and exemplar-based formatting. In the

node-based format, the keys are string tuples, (i, l, ξ), where i
represents the node, l represents the level, and ξ represents the

tensor (α, ρ, ...). The values, represented by ν, are the vectors

for the ith node of the matrix on the lth level of the tensor. In

the exemplar-based format, the keys are string tuples, (j, l, ξ),
where j represents the exemplar, l represents the level, and

ξ represents the tensor. The values, represented by ν, are the

vectors for the jth exemplar of the matrix on the lth level of

the tensor. With the data thus represented, MapReduce jobs

must be constructed to manipulate the information using the

given HAP equations.

In our parallelization scheme, MR-HAP is broken down into

three separate MapReduce jobs. The first job handles updating

τ , c, and ρ. The second job handles updating φ and α. These

369

Fig. 1. Parallelization Scheme

first two jobs loop for a set number of iterations. At the end

of the iterations, the final job extracts the cluster assignments

on each level. Due to dependencies set out in the equations,

the ρ update must occur first. Therefore, τ and c are not

updated during the first iteration. In all other iterations they

occur before the Responsibility update. At the start of each

iteration, the data will be in exemplar-based format. After the

first job, the data will have switched to node-based format. The

second job converts the data back to exemplar-based format

to begin a new iteration or to be used as input to the final

job. See Fig. 1 for a visual representation of the parallelization

scheme. The figure represents what happens to the data during

either of the first two jobs. The tensors have been stacked to

show how the indices line up. The yellow strips on the left

represent information being passed to one mapper, one strip

per mapper. The focus of each mapper is on providing the

reducers with the necessary information. The subsequent focus

of each reducer is on performing the tensor updates as defined

in the HAP equations. As the data comes out of the job, the

switch between exemplar-based and node-based formats can

be easily seen. The output is now ready for use by the next

job, which will follow a similar flow. The following sections

will provide in-depth explanations of each MapReduce job.

1) Updating τ , c, and ρ: This job takes as input the

exemplar-based representation of the data and outputs the

node-based representation of the data with updated values. In

the first iteration, τ and c are not updated due to previously

mentioned dependencies. In this MapReduce job, the map-

per deconstructs the exemplar-based vectors into node-based

values for the reducer to reconstruct node-based vectors. Each

mapper receives a key describing a unique (j, l, ξ) combination

and a value with the corresponding vector. The indices of the

vector represent the nodes; thus, the mapper iterates over the

vector with i. Each reducer receives a key describing a unique

(i, l) combination and a list of values which will be used to

reconstruct the 6 node-based vectors, the 2 node-based vectors

from the level below and the 2 special diagonal vectors. The

indices of the constructed vector represent the exemplars so

the reducer iterates over the vector with j.

2) Updating α and φ: This job takes as input the node-

based representation of the data and outputs the exemplar-

based representation of the data with updated values. In

this MapReduce job, the mapper deconstructs the node-based

vectors into exemplar-based values for the reducer to recon-

struct exemplar-based vectors. Each mapper receives a key

describing a unique (i, l, ξ) combination and a value with

the corresponding vector. The mapper iterates over the vector

with j. Each reducer receives a key describing a unique

(j, l) combination and a list of values which will be used to

reconstruct the 6 exemplar-based vectors and the 2 node-based

vectors from the level above. The indices of the constructed

vector represent the nodes so the reducer iterates over the

vector with i.
3) Extracting Cluster Assignments: This job takes as input

the exemplar-based representation of the data and outputs the

cluster assignments. In this MapReduce job, the mapper de-

constructs the exemplar-based vectors into node-based values

for the reducer to reconstruct node-based vectors. Each mapper

receives a key describing a unique (j, l, ξ) combination and

a value with the corresponding vector. The mapper iterates

over the vector with i. Since this is the last step, only the

required information has to pass to the reducer and the other

information can be neglected. Each reducer receives a key

describing a unique (i, l) combination and a list of values

which will be used to reconstruct the 2 node-based vectors

and the 2 special diagonal vectors. The reducer iterates over

the vector with j.

A. Runtime Complexity

A standard sequential HAP implementation must necessar-

ily have a runtime complexity of O(kLN2) where k represents

the number of algorithmic iterations, run either as a hard limit

or until convergence is reached, L represents the number of

output levels requested, and N represents the cardinality of

the input data set, such that the size of S is (L × N × N).
The runtime complexity is a direct result of iterating over

all three dimensions of the tensors for each iteration. By

implementing the algorithms in the MapReduce framework,

we are able to achieve superior runtime complexity. Under

MapReduce, the MR-HAP runtime complexity reduces to a

linear relationship with the data, assuming the total number

of Virtual Machines (VMs) on the cluster, M , scales to LN ,

i.e. O(kLN2

M) = O(kN) as M → LN . In MR-HAP, M can

only scale up to a maximum of LN because M is limited to

the number of tasks that can be evaluated at the same time.

In this case, it is limited to the minimum of the 6LN mapper

tasks and the LN reducer tasks, where the constant factor six

represents the number of tensor identifications introduced into

the algorithm, namely α, ρ, S, τ, φ, and c.

IV. EXPERIMENTAL RESULTS

To demonstrate the effectiveness and adaptability of the

proposed approach, we executed validation experiments on

several data sets with a variety of modalities, e.g. imagery

and synthesized numerical point data. Where applicable, we

compared our performance to a popular MapReduce hierar-

chical clustering algorithm currently available in the Mahout

library. At its core, their hierarchical clustering is based on a

level-wise K-means clustering approach; thus, we refer to it

370

a) Original “Mandrill” b) 15 Exemplars

c) 7 Exemplars d) 6 Exemplars

Fig. 2. Hierarchical clustering of “Mandrill” 103x103. See text for discussion.

as Hierarchical K-Means (HK-Means). With K-means as the

foundation, HK-Means requires the number of cluster centers

as input. Since our method does not explicitly impose this

requirement, we adopted the initialization method of running

Canopy clustering, also available in Mahout, to discover

the “natural” number of centers. We then use these cluster

centers to seed HK-Means. In order to truly gain an objective

understanding of MR-HAP performance versus HK-Means,

we use the purity extrinsic cluster quality metric to assess

their respective aggregation capabilities [18].

A. Image Segmentation

Hierarchical Affinity Propagation performs very well in

image segmentation tasks as shown in Fig. 2 & Fig. 3. The

“Mandrill” image, Fig. 2, is of size 103×103, which provided

10,609 pixels (data points) to cluster. Similarly, the “Buttons”

image, Fig. 3, is of size 120× 100, resulting in a data set of

12,000 pixels. The similarity input was computed using the

negative Euclidean distance between all pixels treating RGB

intensities as vectors. The diagonal, or preference entries, were

selected as random numbers within [−106, 0]. As for the other

parameters, we set the iterations to 30 and the dampening

factor to λ = 0.5. To generate the clustered images, we re-

color all pixels within a cluster with the color of the selected

exemplar. The number of hierarchy levels for the “Mandrill”

data set was set to L = 3. The top right image is the lowest

level where the pixels were grouped into 15 clusters. The

bottom left image is the second level where the pixels were

grouped into 7 clusters. Finally, the bottom right image is the

highest level where the pixels were grouped into 6 clusters.

From these images we can still see the mandrill’s shape and

most of its colors, but at the highest level it appears fuzzier.

This is because the members of the same clusters were given

the color of the exemplar.

For the “Buttons” image, the number of levels was set to

L = 3. The top right image is the lowest level where the

pixels were grouped into 154 clusters. The bottom left image

is the second level where the pixels were grouped into 25

clusters. Finally, the bottom right image is the highest level

where the pixels were grouped into 11 clusters. The highest

level of the hierarchy appears fuzzier than the original image

due to similar colors clustering underneath a single exemplar.

a) Original “Buttons” b) 154 Exemplars

c) 25 Exemplars d) 11 Exemplars

Fig. 3. Hierarchical clustering of “Buttons” 120x100. See text for discussion.

B. Scalability and Comparison to HK-Means

In order to test the scalability of the MR-HAP algorithm

with respect to speed, we use the data set “Aggregation” [19],

which is a shape set composed of 788 two-dimensional points.

The purpose of these tests was to observe trends in algorithm

runtime as cluster computing power increased, as well as to de-

termine the benefits of running in a distributed environment as

compared to an undistributed environment (a single-machine

Hadoop cluster). Hadoop clusters were provided using Ama-

zon Elastic MapReduce (EMR) to dynamically create clusters

of standard Amazon Elastic Compute Cloud (EC2) instances.

Cluster computing power was scaled both by increasing the

number of VMs within a cluster and by provisioning more

powerful VMs. The two VM instance types used are: (1) the

m1.small, which has 1.7 GB of memory and is considered to

have 1 EC2 Compute Unit (ECU) with 160 GB of instance

storage and a 32-bit architecture, and (2) the m1.xlarge, which

has 15 GB of memory, 8 ECU, 1,690 GB of instance storage,

and a 64-bit architecture. The single-machine Hadoop cluster

utilized to simulate an undistributed environment has 8 GB

of memory, 8 ECU, 40 GB of machine storage, and a 64-bit

architecture.

For comparison to another state-of-the-art MapReduce clus-

tering methodology, our MR-HAP algorithm was bench-

marked against HK-Means. Due to its inherently parallel

design, MR-HAP immediately begins to benefit from being

placed in a distributed environment. Represented by a solid

blue line in Fig. 4, MR-HAP runtime decreases by 64%,

from 320 minutes to 115 minutes, when cluster computational

power is increased by just 4 additional ECU. MR-HAP eventu-

ally reaches the threshold of a linear relationship with the size

of the input data at a runtime of around 20 minutes, which is

a 94% decrease from the single ECU cluster. Furthermore,

at its best, MR-HAP performs 66% faster in a distributed

environment than the undistributed environment which is

represented by the blue dotted line in Fig. 4. In contrast, the

Mahout HK-Means algorithm used in this experimentation,

indicated by the solid green line in Fig. 4, is not parallelized

to the extent of MR-HAP. Each single iteration of K-Means is

structured under Mahout to distribute over a Hadoop cluster,

but the hierarchical “Top Down” structure requires iterative

371

Fig. 4. Time vs. Number of EC2 CPUs. Our MR-HAP better utilizes available
compute resources to significantly improve runtime.

executions of K-Means for each level. This lack of an overall

parallelization scheme results in reduced performance at scale

than MR-HAP. HK-Means runtime initially increases by 8.5%

when ECU is increased from 1 to 10 due to Hadoop cluster

overhead, including network latency and I/O time. However,

at 10 ECU, HK-Means overcomes this overhead and begins

to benefit from the MapReduce parallelization scheme. This

results in an eventual 16% runtime decrease between 1 and 80

ECU, at which point HK-Means eventually reaches a linear

relationship with the data at a runtime around 225 minutes.

Unlike MR-HAP, HK-Means never surpasses its undistributed

runtime threshold of 146 minutes indicated by the green

dotted line in Fig. 4. Finally, at its best, HK-Means runs 90%

slower than MR-HAP, requiring 226 minutes of execution

compared to MR-HAP’s 23 minutes. With significantly faster

runtimes, MR-HAP still posts purity levels competitive with

HK-Means, shown in Fig. 5. This combination of speed and

high performance is ideal for processing big data in a large-

scale cloud computing environment.

V. CONCLUSION

The need for efficient and high performing data analysis

frameworks remain paramount to the big data community.

The AP clustering algorithm is rapidly becoming a favorite

amongst data scientists due to its high quality grouping ca-

pabilities, while requiring minimal user specified parameters.

Recently, a multilayer structured version of the AP algorithm,

HAP, was introduced to automatically extract tiered aggre-

gations inherent in many data sets. HAP is modeled as a

message-based network that allows communication between

nodes and between levels in the hierarchy, and mitigates many

of the biases that arise in techniques that require one to

input the number of clusters. In the present work, we have

developed the first ever extension, MR-HAP, to address the big

data problem—demonstrating an efficient parallel implemen-

tation using MapReduce that directly improves the runtime

complexity from quadratic to linear. The novel tensor-based

partitioning scheme allows for parallel message updates and

utilizes a consistent data representation that is leveraged by

map and reduce tasks. Our approach seamlessly allows us to

cluster a variety of data modalities, which we experimentally

showcased on data sets ranging from synthetic numerical

points to imagery. Our analysis and computational perfor-

Fig. 5. Purity levels of MR-HAP vs. HK-Means. MR-HAP posts results
highly competitive with HK-Means.

mance is competitive with the state-of-the-art in MapReduce

clustering techniques.

REFERENCES

[1] S. Humbetov, “Data-intensive computing with MapReduce and Hadoop,”
in AICT, 2012, pp. 1–5.

[2] T. A. S. Foundation, “Hadoop 1.1.2 documentation,” The
Apache Software Foundation, 03 2013. [Online]. Available:
http://hadoop.apache.org/docs/r1.1.2

[3] I. E. Givoni, C. Chung, and B. J. Frey, “Hierarchical affinity propaga-
tion,” CoRR, vol. abs/1202.3722, 2012.

[4] J. A. Hartigan and M. A. Wong, “Algorithm AS 136: A k-means
clustering algorithm,” Applied Statistics, vol. 28, pp. 100–108, 1978.

[5] G. McLachlan and D. Peel, Finite Mixture Model. John Wiley & Sons,
Inc, 2000.

[6] B. J. Frey and D. Dueck, “Clustering by passing messages between data
points,” Science, vol. 315, 2007.

[7] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on
large clusters,” in OSDI. USENIX Association, 2004, pp. 10–10.

[8] C.-T. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. Bradski, A. Y. Ng, and
K. Olukotun, “MapReduce for Machine Learning on multicore,” in NIPS,
2007, pp. 281–288.

[9] C. Zewen and Z. Yao, “Parallel text clustering based on mapreduce,” in
CGC, 2012, pp. 226–229.

[10] H. Wang, Y. Shen, L. Wang, K. Zhufeng, W. Wang, and C. Cheng,
“Large-scale multimedia data mining using MapReduce framework,” in
IEEE CloudCom, 2012, pp. 287–292.

[11] R. M. Esteves, T. J. Hacker, and C. Rong, “Cluster analysis for the cloud:
Parallel competitive fitness and parallel k-means++ for large dataset
analysis,” in IEEE CloudCom, 2012, pp. 177–184.

[12] T. Nair and K. Madhuri, “Data mining using hierarchical virtual k-means
approach integrating data fragments in cloud computing environment,”
in IEEE CCIS, 2011, pp. 230–234.

[13] F. Wu, W. Wang, H. Zhang, and Y. Zhuang, Handbook of Research on
Hybrid Learning Model: Advanced Tools, Technologies, and Applica-
tions. IGI Global, 2010, ch. The Clustering of Large Scale E-Learning
Resources, pp. 94–104.

[14] T. A. S. Foundation, “Apache Mahout: Scalable machine learning
and data mining,” The Apache Software Foundation, 2013. [Online].
Available: http://mahout.apache.org

[15] L. Kaufman and P. Rousseeuw, “Clustering by means of medoids,”
Reports of the Faculty of Mathematics and Informatics, Delft University
Technology, vol. 87-3, 1987.

[16] J. Xiao, J. Wang, P. Tan, and L. Quan, “Joint affinity propagation for
multiple view segmentation,” in IEEE Computer Vision, 2007, pp. 1–7.

[17] H. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, “A survey of
multilinear subspace learning for tensor data,” Pattern Recognition,
vol. 44, no. 7, pp. 1540–1551, Jul. 2011.

[18] N. Sahoo, J. Callan, R. Krishnan, G. Duncan, and R. Padman, “Incre-
mental hierarchical clustering of text documents,” in CIKM. ACM,
2006, pp. 357–366.

[19] A. Gionis, H. Mannila, and P. Tsaparas, “Clustering aggregation,” ACM
TKDD, vol. 1, Mar. 2007.

372

