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Problem Statement 

Clustering algorithms are a fundamental part of Machine 
Learning (ML), used to extract the underlying structure of un-
known datasets. ML has the potential to provide meaningful 
insight for large datasets. However, many traditional imple-
mentations of clustering algorithms are hindered because 
they are inefficient and incapable of handling Big Data. Thus 
there is a need within the ML community to develop massive-
ly scalable and computationally efficient implementations. 

Comparisons / Benchmarking 

Hierarchical Affinity Propagation vs. Hierarchical K-Means 

It is apparent from the table above and the figures to the right 
that HAP consistently exceeds the performance of HK-Means. Due 
to its superior parallel design, HAP, indicated by blue in the fig-
ures, is more receptive to benefits from parallelization on increas-
ingly powerful Hadoop clusters than HK-Means, colored green in 
the figures. 

Through parallelization, HAP is able to process the tensors at 
every level in a single step. In contrast, the Mahout implementa-
tion of K-Means is parallelized for each level, but creating the HK-
Means “Top Down” structure requires sequential executions of K-
Means. 

With significantly faster runtimes, HAP still posts purity levels 
competitive with HK-Means. This combination of speed and high 
performance is ideal for processing Big Data in a large-scale cloud 
computing environment. 

Results 
HAP has shown great results when it 

comes to deriving the underlying structure 
of unknown data.  When processing imag-
es, each pixel is its own data point repre-
sented as a RGB vector. In the images 
shown to the right, HAP has performed im-
age segmentation. In the plots below, HAP 
clustered 2-D points by distance. From left 
to right, the sub-clusters group together in-
to subsequent hierarchical levels. 

MapReduce Design and Development 

Our methodology for parallelizing Hierarchical Affinity Propagation (HAP) in MapReduce was motivated by viewing the major 
update equations for HAP as tensorial mathematical constructs.  The HAP algorithm can be parallelized because all updates to 
the various tensors require only a subset of the total information provided. Therefore, 
the updates can be split into parallel jobs where each job receives the subset of data 
it needs to evaluate the update. 

In our parallelization scheme, HAP is broken down into three separate MapReduce 
jobs. The first job handles updating ρ, c, and τ. The second job handles updating α 
and φ. These first two jobs loop for a set number of iterations. At the end of the itera-
tions, the final job extracts the cluster memberships on each level.  

In the figure on the right, the tensors have been stacked to show how the indices 
line up in the parallelization scheme. The yellow strips on the left represent infor-
mation being passed to mappers, one strip per mapper. The information is then 
passed through reducers. The resulting output is now ready for use by the next job. 

Hierarchical Affinity 

Propagation 
 Hierarchical Affinity Propagation is an efficient, paralleliza-
ble exemplar-based clustering algorithm, used to extract the 
underlying structure from an unlabeled dataset.  

 Objective: Select exemplars in order to maximize the simi-
larities between every data point in a cluster and that clus-
ter's exemplar.  

Future Work 

The final goal for this 
project is to use the clus-
ter membership assign-
ments learned from HAP 
in combination with se-
mantic metadata mined 
from the input data to 
create a semantically rich, 
interactive user environ-
ment.  In order to attain the 
metadata, the input data must be preprocessed.  For exam-
ple, sentiment  analysis can be used for text, texture analysis 
can be used for images, etc.  Because HAP  is an unsupervised 
algorithm, the goal is to gather as much information as possi-
ble from preprocessing. This simulation of a user interface 
shows how our solution can  present meaningful information 
about an initially unknown dataset in an easy-to-use, easy-to-
understand, portable, and scalable web interface. 
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At a Glance 

Objective 
To develop a robust data mining framework in a cloud-

computing environment, capable of processing massive data 
quantities for the extraction of actionable intelligence. 

Image of User Interface 

Benchmark HAP HK-Means 
Small† Cluster Runtime 320m 270m 

Big‡ Cluster Runtime 23m 226m 

Runtime Speedup (minutes) 300m 45m 

Runtime Speedup (%) 94% 16% 

Undistributed Runtime 59m 146m 

Runtime Plateau 20m 225m 

†: 1 AWS ECU, ‡: 80 AWS ECU 

Parallelization Scheme 

128 x 128 image 

16,384 pixels 

Original 15 clusters 

7 clusters 6 clusters 

51 clusters 13 clusters 8 clusters 5 clusters 

128 x 128 image 

16,384 pixels 

1,600 2-D points from 4 Gaussian Distributions 


