
Large-scale Clustering for Big Data Analytics:
A MapReduce Implementation of Hierarchical Affinity Propagation

Dillon Mark Rose1, Jean Michel Rouly2, Rana Haber1, Nenad Mijatovic1, Adrian M. Peter1

1Florida Institute of Technology, 2George Mason University

This material is based upon work/research supported in part by the

National Science Foundation under Grant No. 1263011.

2013 AMALTHEA REU Program
Problem Statement

Clustering algorithms are a fundamental part of Machine
Learning (ML), used to extract the underlying structure of un-
known datasets. ML has the potential to provide meaningful
insight for large datasets. However, many traditional imple-
mentations of clustering algorithms are hindered because
they are inefficient and incapable of handling Big Data. Thus
there is a need within the ML community to develop massive-
ly scalable and computationally efficient implementations.

Comparisons / Benchmarking

Hierarchical Affinity Propagation vs. Hierarchical K-Means

It is apparent from the table above and the figures to the right
that HAP consistently exceeds the performance of HK-Means. Due
to its superior parallel design, HAP, indicated by blue in the fig-
ures, is more receptive to benefits from parallelization on increas-
ingly powerful Hadoop clusters than HK-Means, colored green in
the figures.

Through parallelization, HAP is able to process the tensors at
every level in a single step. In contrast, the Mahout implementa-
tion of K-Means is parallelized for each level, but creating the HK-
Means “Top Down” structure requires sequential executions of K-
Means.

With significantly faster runtimes, HAP still posts purity levels
competitive with HK-Means. This combination of speed and high
performance is ideal for processing Big Data in a large-scale cloud
computing environment.

Results
HAP has shown great results when it

comes to deriving the underlying structure
of unknown data. When processing imag-
es, each pixel is its own data point repre-
sented as a RGB vector. In the images
shown to the right, HAP has performed im-
age segmentation. In the plots below, HAP
clustered 2-D points by distance. From left
to right, the sub-clusters group together in-
to subsequent hierarchical levels.

MapReduce Design and Development

Our methodology for parallelizing Hierarchical Affinity Propagation (HAP) in MapReduce was motivated by viewing the major
update equations for HAP as tensorial mathematical constructs. The HAP algorithm can be parallelized because all updates to
the various tensors require only a subset of the total information provided. Therefore,
the updates can be split into parallel jobs where each job receives the subset of data
it needs to evaluate the update.

In our parallelization scheme, HAP is broken down into three separate MapReduce
jobs. The first job handles updating ρ, c, and τ. The second job handles updating α
and φ. These first two jobs loop for a set number of iterations. At the end of the itera-
tions, the final job extracts the cluster memberships on each level.

In the figure on the right, the tensors have been stacked to show how the indices
line up in the parallelization scheme. The yellow strips on the left represent infor-
mation being passed to mappers, one strip per mapper. The information is then
passed through reducers. The resulting output is now ready for use by the next job.

Hierarchical Affinity

Propagation
 Hierarchical Affinity Propagation is an efficient, paralleliza-
ble exemplar-based clustering algorithm, used to extract the
underlying structure from an unlabeled dataset.

 Objective: Select exemplars in order to maximize the simi-
larities between every data point in a cluster and that clus-
ter's exemplar.

Future Work

The final goal for this
project is to use the clus-
ter membership assign-
ments learned from HAP
in combination with se-
mantic metadata mined
from the input data to
create a semantically rich,
interactive user environ-
ment. In order to attain the
metadata, the input data must be preprocessed. For exam-
ple, sentiment analysis can be used for text, texture analysis
can be used for images, etc. Because HAP is an unsupervised
algorithm, the goal is to gather as much information as possi-
ble from preprocessing. This simulation of a user interface
shows how our solution can present meaningful information
about an initially unknown dataset in an easy-to-use, easy-to-
understand, portable, and scalable web interface.

References

[1] I. E. Givani, C. Chung, and B. J. Frey. Hierarchical Affinity Propaga-
tion. rXiv preprint arXiv 1202. 3722 (2012)

[2] J. Dean and S. Ghemawat. MapReduce: simplified data processing
on large clusters. Proceedings of the 6th conference on Symposium
on Operating Systems Design & Implementation - Volume 6, USENIX
Association, 2004, 10-10

[3] J. A. Hartigan and M. A. Wong. Algorithm AS 136: A k-means clus-
tering algorithm. Applied Statistics,28:100-108, 1978.

[4] N. Sahoo, J.Callan, R. Krishnan, G. Duncan, and R. Padman. Incre-
mental hierarchical clustering of text documents. In Proceedings of
the 15th ACM international conference on Information and
knowledge management, CIKM '06, pages 357-366, New York, NY,
USA, 2006. ACM.

Apache, Apache Hadoop Apache Mahout, Hadoop, Mahout, the Hadoop logo, and
the Mahout logo are trademarks of The Apache Software Foundation. Amazon Web
Services, the “Powered by Amazon Web Services” logo, and the "Amazon Web Ser-
vices" logo are trademarks of Amazon.com, Inc. or its affiliates in the United States
and/or other countries. Used with permission. No endorsement by The Apache Soft-
ware Foundation or Amazon.com, Inc. is implied by the use of these marks.

At a Glance

Objective
To develop a robust data mining framework in a cloud-

computing environment, capable of processing massive data
quantities for the extraction of actionable intelligence.

Image of User Interface

Benchmark HAP HK-Means
Small† Cluster Runtime 320m 270m

Big‡ Cluster Runtime 23m 226m

Runtime Speedup (minutes) 300m 45m

Runtime Speedup (%) 94% 16%

Undistributed Runtime 59m 146m

Runtime Plateau 20m 225m

†: 1 AWS ECU, ‡: 80 AWS ECU

Parallelization Scheme

128 x 128 image

16,384 pixels

Original 15 clusters

7 clusters 6 clusters

51 clusters 13 clusters 8 clusters 5 clusters

128 x 128 image

16,384 pixels

1,600 2-D points from 4 Gaussian Distributions

