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Abstract

Identifying the concepts covered in a university course based
on a high level description is a necessary step in the evalu-
ation of a university’s program of study. To this end, data
describing university courses is readily available on the In-
ternet in vast quantities. However, understanding natural
language course descriptions requires manual inspection
and, often, implicit knowledge of the subject area. Addition-
ally, a holistic approach to curricular evaluation involves
analysis of the prerequisite structure within a department,
specifically the conceptual overlap between courses in a pre-
requisite chain. In this work we apply existing topic model-
ing techniques to sets of course descriptions extracted from
publicly available university course catalogs. The inferred
topic models correspond to concepts taught in the described
courses. The inference process is unsupervised and gener-
ates topics without the need for manual inspection. We
present an application framework for data ingestion and
processing, along with a user-facing web-based application
for inferred topic presentation. The software provides tools
to view the inferred topics for a university’s courses, quickly
compare departments by their topic composition, and visu-
ally analyze conceptual overlap in departmental prerequisite
structures.

1 Introduction

Computer Science education is an increasingly important
field of growth at many universities [21, 14]. As departments
grow and change, it becomes necessary to automate the
comparison and evaluation processes. However, much of
the published data about departments is non-standard, nat-
ural language text that is not easy to process automatically.
There are many parties impacted by the lack of up to date,
automatic, and simple to understand information about the
characteristics of universities across the country.

Prospective college students and their parents seek out
information on college courses to compare curricula in a
meaningful way, based on content, in order to find their

best fit. A typical approach to this task is an information
gathering and subsequent program comparison process du-
plicated many thousands of times across the population of
rising college-going freshmen. Hewner [9] conducted a qual-
itative study of CS students and found that students in CS
need to make a variety of decisions about what courses they
take. Invariably, they have limited knowledge when making
these decisions. They also often make these decisions based
on whether the classes will be enjoyable and assumed that
since courses are required, they will have useful content. We
believe that a system such as ours can assist students with
making more strategic goal-oriented decisions which many
of the students want to take. It will also allow them to better
see the connection between courses and if possible make
decision based on the skillset they want to develop.

Additionally, accrediting bodies (e.g., ABET) typically re-
quire a department to cover a given set of standardized top-
ics as a criterion for evaluation [1]. The accreditation process
can take up to 18 months to complete [1]; automating the
departmental evaluation process would greatly reduce time
spent measuring a CS department’s coverage of a specific
set of areas.

Programs of study at institutions of higher education can
be represented as a chain composed of the courses required
to complete a degree. These component courses in turn
are composed of the topics or concepts they are intended
to cover. Evaluation of the courses within a particular pro-
gram is necessary for the evaluation of an overall academic
curriculum. Analyzing the structure of a program’s prerequi-
site chain, for example, requires an understanding of each
constituent course and any overlap of covered topics be-
tween courses and their prerequisites. Additionally, inter-
institutional curricular comparison requires an aggregate
evaluation of the courses within each institution’s program.
However, comparing and evaluating different courses re-
quires expert knowledge in the relevant field. No two courses
can be measured for similarity based only on inherent, mea-
surable properties. A domain expert is required to inspect
the description of the courses and determine their concep-
tual overlap.
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Automating the information retrieval process to identify
core concepts covered in any particular course removes the
need for a domain expert. By analyzing course descriptions
from a corpus spanning fields and institutions, topic model-
ing can provide a method to generate a statistical represen-
tation of core course concepts. Specifically, unsupervised la-
tent variable models present a method of identifying the core
concepts (i.e., topics) covered in a course. This introduces
the possibility of applications in automated course and pro-
gram evaluation methods. The form of topic modeling em-
ployed in this work is Latent Dirichlet allocation (LDA) [5].

The overall goal of this work is the development of a sys-
tem to digest large quantities of university course informa-
tion, specifically academic course descriptions, and to pro-
cess and ultimately generate interactive descriptions of the
core concepts covered within institutional programs as illus-
trated by inferred topics. Learned topics will be presented in
a web-based application allowing inspection from multiple
perspectives.

2 Background on LDA

Topic modeling, a form of latent variable modeling, is an
unsupervised machine learning method which attempts to
recreate the distribution of so-called “topics” an author used
to generate a corpus of documents. The term topic is used
to describe a frequency distribution of terms within a vocab-
ulary. In this use, a topic can be understood to represent an
academic concept covered within the context of a course.
The topics discovered in a corpus can be used to categorize
documents and provide structure to an otherwise unknown
dataset.

Latent Dirichlet allocation (LDA) is a specific type of topic
modeling which assumes that a mixture of multiple topics
exist within a single document in some proportion (i.e., were
used to generate that document) [5]. LDA assumes a gen-
erative process where, for each word in the document, the
algorithm selects a distribution over topics, selects a topic,
and then selects a vocabulary term [5]. By picking a distri-
bution over topics, multiple possible topics can be blended
into a single document. Reversing this generative process is
significantly more difficult because the topic distributions
are unknown; this is what the “hidden model” or “latent
model” refers to.

LDA can best be understood through its generative pro-
cess. Given the set of distributions as input, generating the
corpus topics is a probabilistic process. Taking the variables
θd ,k (topic proportion for topic k in document d),β1:k (topic
k), zd ,n (topic assignment for word n in document d), and
wd ,n (the nth word in document d), LDA calculates the pos-
terior probability in Equation 2.1 [4].

p(β1:K ,θ1:D , z1:D |w1:D ) = β1:K ,θ1:D , z1:D , w1:D

w1:D
(2.1)

Using a variety of probabilistic methods to calculate or ap-
proximate the denominator (i.e., evidence), LDA results in a

Figure 2.1: LDA graphical diagram adapted from [4].

usable set of vocabulary frequency distributions or topics.
Specifically, Gibbs Sampling, a variety of Bayesian Inference,
is used to approximate the LDA posterior probability [5].

A graphical “plate” diagram of LDA is given in Figure 2.1,
adapted from [5]. Circular nodes represent latent variables
while rectangular plates represent duplication. This repre-
sentation is identical to Equation 2.1, with N the number of
words in a document and D the number of documents.

2.1 Related Work

Our research complements other efforts within Computer
Science education that are directed towards categorization
of content to improve pedagogy, e.g., Hubwieser et al. [10].
We believe that our project contributes both, by identifying
content (i.e., topics) being taught across institutions and by
identifying gaps and unique contributions. This informa-
tion can be compared to teacher competencies and used to
design assessment and instruments to measure them. An-
other area in which this work can assist is in identification of
concepts and their classification, especially “threshold con-
cepts” [19]. Overall, we believe our data-driven approach
complements other qualitative efforts by building on them
and by automating some aspects of the research.

Other work has also attempted to extract concept infor-
mation from course data. Yang et al. employ four distinct
techniques to map courses into a conceptual space and then
learn prerequisite relationships between similar courses [20].
Two of their conceptual mapping techniques generate la-
tent features, which have the downside of not being human-
readable as in LDA. The remaining two techniques generate
human-readable topics, but rely either on an outside source
(Wikipedia) or simply represent concepts as the vocabulary
of the document. The benefit of LDA as an information re-
trieval tool is its ability to generate pseudo human-readable
topics while acting in a fully unsupervised manner on a sin-
gle, large data set. Our approach naively targets a dataset of
fixed universities and customizes web scrapers specifically
for their computer science departments. Effland et al. intro-
duces a robust web crawler system to automatically search
for, identify, and extract course descriptions from disparate
locations on the Internet [8]. Application of similar technol-
ogy in this work was considered, and would greatly improve
the scale of the analyzed data.
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University Course Count

American University (AU) 32
George Mason University (GMU) 145
Kansas State University (KSU) 83
Louisiana State University (LSU) 59
Portland State University (PDX) 190
Rensselaer Polytechnic Institute (RPI) 61
University of South Carolina (SC) 64
Stanford University (Stanford) 69
University of Utah (Utah) 142
University of Tennessee, Knoxville (UTK) 29

ACM Exemplar Courses (EC) 68

Table 3.1: CS program statistics

3 Methods

The structure of this work is threefold. First, a dataset of
university course descriptions is generated using publicly
available data from a number of North American universi-
ties. This process is discussed in Section 3.1. Second, LDA
is applied to the collected data and topics are inferred. This
step is discussed in Section 3.3. Finally, the collected data
and inferred topics are presented in a user-facing web appli-
cation, described in Section 3.4.

3.1 Data Acquisition

The primary data manipulated in this study are university
catalog course descriptions. The current experimental data
sources are described in Table 3.1. Note that only Computer
Science departments are included in this dataset, in order
to simplify the evaluation process and the required num-
ber of inferred topics. Simple web scrapers were written
using Python and BeautifulSoup to download publicly avail-
able descriptions from university catalogs. These will be
made publicly available at http://github.com/jrouly/
trajectory. Descriptions and catalog webpages appear
in a vast variety of different formats, structures, and HTML
correctness, so a parser was written for each university to
acquire the unstructured text. This text was then passed
through a cleaning procedure to remove abbreviations and
non-English characters, as well as common English stop
words. Finally the text was passed through a stemmer to strip
morphology from the words and eliminate duplicate terms.
At the same time, departmental course prerequisite data is
collected from the catalog as well. Prerequisites are limited
to courses in the database, meaning that references older
courses that are no longer present in the catalog are ignored.
Non-specific prerequisite references (e.g., 400-level) are
ignored as well.

The Python scraping framework developed is structured
to allow pluggable web scrapers tooled to specific syllabus
repositories. There are a number of existing web scrapers in
place pointing to different university course catalogs, but the
code can be easily extended in the future to grow the data

set. Integrated in the scraping framework is a lightweight
relational database layer to store both course description
data and university metadata, including names, URLs, and
prerequisite information. The database layer also stores
inferred topics.

3.2 Preliminary Data Exploration

In addition to LDA, other unsupervised machine learning
tools can be applied to the same data set. Simple cluster-
ing algorithms (e.g., K-Means) when given the same bag
of words corpus as input act to identify groupings of sim-
ilar documents according to their term frequency vector
Euclidean distance [16]. Additional, similar clustering algo-
rithms can be applied in a similar manner.

Preliminary exploratory results are promising. We applied
K-Means clustering to a sample dataset of course descrip-
tions selected from the George Mason University Computer
Science online catalog across multiple semesters. Using
course section IDs as ground-truth labels, we clustered the
course descriptions. Table 3.2 summarizes the metrics com-
puted on the resulting clustering. Homogeneity represents
the “same-ness” of a cluster, or the degree to which each clus-
ter contains only members of a single type. Completeness
represents the “spread” of courses across clusters, or the de-
gree to which every member of the same type is assigned to
the same cluster. V-Measure is simply the harmonic mean of
the prior two metrics. For each metric, higher is better, and
they are bounded from 0 to 1. A distributed implementation
of K-Means available in the Python toolkit scikit-learn
was used to perform the clustering.

The high completeness values are promising: this indi-
cates that many of the same course are assigned under the
same cluster prototype. The low value of homogeneity is un-
surprising given the initialization parameters used: K-Means
was initialized to detect only 20 clusters, a far smaller num-
ber than the magnitude of distinct course sections available.
The number 20 was chosen arbitrarily as a smaller count
than the true number of distinct course sections in order to
increase cluster size.

Execution time 0.144s
Homogeneity 0.415
Completeness 0.877
V-measure 0.563

Table 3.2: Preliminary clustering metrics

3.3 Topic Modeling

After the exploratory clustering process, we passed cleaned
data into a topic modeling framework by exporting from
the database layer to the filesystem in a structured “bucket
of files” format. The Java MALLET library is used to per-
form LDA on the course description data. A data pipeline is
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constructed using the MALLET API that reads input data, to-
kenizes it, and trains an LDA topic model. The inferred top-
ics are then exported to a common Comma Seperated Val-
ues (CSV) format and read back into the database layer and
applied to existing courses. Independent runs of LDA with
distinct parameterization are segregated in the database
into “Result Sets”, allowing sets of inferred topics to sit side
by side without interfering. This also allows the presentation
of different sets of inferred topics to the end user.

The initialization parameters of MALLET’s LDA imple-
mentation are summarized in Table 3.3. Experiments were
run varying parameters throughout the experimental range,
including the MALLET default values. However, as the num-
ber of topics increased greatly beyond 750, and as β de-
creased greatly below 0.0001, the MALLET framework began
to encounter instability and errors. Any runs which encoun-
tered infinite or “not-a-number” values were immediately
discarded. Ultimately 77 result sets were retained for analy-
sis.

3.4 Visualization

An interactive, dynamic user visualization of course descrip-
tions and topics has been prototyped. The visualization is a
web-based application built upon the Python Flask library.
The tool interfaces with the same database layer used by the
rest of the application framework to provide an aesthetically
pleasing user-facing interface with several primary modules.
By default, the web application presents the user with a high
level “dashboard” overview of the dataset and available re-
sult sets, where a result set is the set of topics inferred after
a single run of the LDA module with a distinct initialization
set. After selecting a result set, the user can browse the data
by course, department, university, or inferred topics. The
remainder of this section describes implementation details
of the tool’s primary features.

3.4.1 Explore Courses

When presented with the complete university dataset, the
user may interactively search for a university. Once a univer-
sity is selected, the user may search through its registered
departments and select a course of interest. On selecting
a course, the text of its description is displayed in both its
original format and its cleaned, stemmed format. Addition-
ally, the course’s inferred topics are listed in order of their
proportion within the course description. These topics are
expandable, and upon interaction present the user with the
list of other known courses with that inferred topic. Any top-
ics appearing in a document with proportion under 15% are
automatically hidden from the user. This design choice was
implemented to reduce visual clutter from inferred topics
with low relevance to the class.

3.4.2 Prerequisite Chain Analysis

In addition to the course-specific data, an interactive, col-
lapsible tree visualization of the course’ prerequisite chain

is displayed. The recursively generated tree visualization
provides a high level view of the course’s position within a
department. Figure 3.1 details the prerequisite tree visual-
ization. Above this visualization is the prerequisite chain
conceptual analysis tool. This tool automatically provides a
view of any registered prerequisite courses along with their
inferred topics. Any shared topics between the prerequisites
and the selected course are highlighted to indicate concep-
tual overlap.

Observe the course CS 310 “Data Structures” in the upper
middle of the prerequisite tree. Table 3.4 details its top-
ics, along with the topics of its prerequisite courses CS 105
“Computer Ethics and Society” and CS 211 “Object-Oriented
Programming”. Clearly there is a significant area of over-
lap between a data structures course and an introductory
course in object oriented programming, as illustrated by the
two italicized overlapping topics. Specifically, the overlap
is in the areas of algorithms and data structures as well as
object oriented programming. The ethics course, however,
does not share any conceptual overlap with CS 310. Inspect-
ing the context of these courses, however, reveals that CS
105 is a common freshman requirement at George Mason,
and many upper level classes depend on its completion. It
is intended as a baseline of student maturity rather than a
prerequisite because of the concepts it introduces.

3.4.3 Compare Departments

The user may also compare two university departments.
Topics inferred from every course in the department are
collected and displayed side by side. Topics unique to each
department are displayed separately from the intersection
set of common topics. Similarity metrics describing the rela-
tionship between the two departments are defined as well
— Jaccard index, cosine similarity, and Euclidean distance.
Defined as |A∩B |

|A∪B | , the Jaccard index is based on the num-
ber of items unique to and shared between each set [11].
The remaining metrics are based on a “topic-vector” rep-
resentation of each department. The topic-vector is a bi-
nary vector where each bit indicates whether a particular
topic was inferred for the given department. Features are
unweighted and the topic-vector indicates only whether
a topic is present in a department’s topic set, and not its
frequency of occurrence. Interpreting this vector represen-
tation geometrically, the Euclidean and cosine distances are
calculated.

3.4.4 Evaluate Department

The tool also allows users to easily evaluate university depart-
ments against third party benchmarks. The Association of
Computing Machinery (ACM) maintains an annual writeup
of guidelines for undergraduate computer science educa-
tion [2]. These guidelines include two important sections,
the ACM Exemplar Courses (EC) and Knowledge Areas. The
Knowledge Areas are 18 broad topics within Computer Sci-
ence as put forth by the ACM. EC include real course de-
scriptions from disparate sources compiled by the ACM and
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Parameter Description Experimental Range Default

α Dirichlet concentration parameter. [1, Iterations] Iterations
β Dirichlet concentration parameter. [0.0001, 0.5] 0.01
Iterations The number of LDA iterations. — 3000
Topics The number of topics to infer. [100, 1000] —

Table 3.3: LDA Initialization Parameters

Figure 3.1: Interactive prerequisite tree visualization tool

GMU CS 310 Topics Proportion

languag, object, program, orient, includ, type, abstract, design, implement, concept 29.946%
program, problem, solv, algorithm, data, structur, comput, introduct, languag, techniqu 21.461%
includ, design, system, topic, comput, introduct, cover, applic, algorithm, techniqu 26.117%

GMU CS 211 Topics [Prerequisite] Proportion

languag, object, program, orient, includ, type, abstract, design, implement, concept 29.433%
program, problem, solv, algorithm, data, structur, comput, introduct, languag, techniqu 26.772%
code, compil, pars, analysi, optim, gener, languag, lexic, techniqu, construct 18.685%
comput, method, theori, basic, principl, includ, topic, model, cover, scientif 16.076%

GMU CS 105 Topics [Prerequisite] Proportion

ethic, comput, issu, profession, social, technolog, privaci, legal, relat, digit 75.964%

Table 3.4: Topics of GMU CS 310 and its prerequisite courses, CS 105 and CS 211. Overlapping topics are italicized.

manually annotated with the Knowledge Areas they cover.
These data sets are used to perform primary evaluation. The
benchmarks used in this study are the ACM Knowledge Ar-
eas.

The web tool automatically evaluates the performance
of a university department. The tool checks for conceptual
overlap between courses and ACM Knowledge Areas and
predicts Knowledge Area labels where overlap exists. Ad-
ditionally, if the department has been manually annotated
with Knowledge Areas, these “ground truth” labels are com-
pared against the predicted labels, and similarity coefficients
between the two sets are computed. The label set similarity
coefficient is computed in two ways. First, the Jaccard index
of the predicted and ground truth labels is calculated. Then,
the percent of the ground truth labels included in the pre-

diction set is calculated. The web visualization provides an
automatic interface for performing this evaluation process.

4 Case Studies

In the sequel, three case studies are described in depth to
exemplify the main features of the tool. First, Section 4.1
discusses the prerequisite analysis features of the tool, and
presents a summary of statistics about the universities in-
cluded in this study. Second, Section 4.2 closely consid-
ers two areas within Computer Science and discusses the
inferred topics for courses within those areas. Finally, Sec-
tion 4.3 details the similarities and differences between pairs
of university departments and also presents a summary of
comparisons between all the universities in this study.
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4.1 Case Study: Prerequisite Analysis

To understand how a course fits into a department, its po-
sition in the prerequisite chain must be analyzed. Take, for
example, a course in mobile application development. We
predict that any course of this nature will most likely be an
upper level elective with a moderate number of prerequisite
courses. Indeed, we see this is the case with George Mason’s
CS 477, Portland State’s CS 410, and Stanford’s 231M. How-
ever, many of the topics covered in a mobile development
course are niche topics, and specific to that field. There-
fore, it might not be the case that any particular lower level
courses will cover specific, overlapping topics.

Let us consider George Mason University’s CS 477 “Mo-
bile Application Development”. The course description dis-
cusses mobile platforms and the various software design
issues specific to mobile platforms. There are two inferred
topics for this course. The first topic, with 32% proportion,
includes the terms “develop”, “platform”, and “mobile” at
high frequency. The second topic, with only 15% proportion,
is more generic and includes terms like “system”, “computer”,
and “topic”. The course also has two registered prerequisites:
CS 310 “Data Structures” and CS 367 “Computer Systems
and Programming”. Within the context of the department,
these two courses are major prerequisites for any upper level
course. As expected, neither of the two prerequisite courses
share the mobile-specific topic inferred for CS 477. CS 310,
however, does overlap with the generic computer systems
topic. We therefore conclude that the CS 477 course regis-
ters its prerequisites primarily to ensure a baseline level of
maturity and skill among its students, rather than because
some necessary concepts are introduced at a lower level and
expanded upon at the higher level.

To quantify the typical level of conceptual overlap be-
tween prerequisites within a department, we introduce
a vector representation of a course, the “weighted topic-
vector”. Like the unweighted topic-vector representation of
a department, the weighted topic-vector is a vector of uni-
form length corresponding to the total number of inferred
topics among all known courses. However, the features of a
weighted topic-vector represent the proportion with which
the particular topic is represented in the course’s description.
In this way, the weighted topic-vector takes into account the
importance of a topic to a course, rather than simply bi-
nary topic membership as in the unweighted topic-vector.
By computing the average distance between the weighted
topic-vectors of a course and its prerequisites, the level of
conceptual overlap for that course can be quantified. Averag-
ing these distance measures over every course in the depart-
ment that has registered prerequisites results in a measure of
average prerequisite conceptual overlap within the depart-
ment. Table 4.1 summarizes the levels of conceptual overlap
for the five universities in the dataset with registered pre-
requisite trees, where a higher average value of conceptual
overlap indicates a closer relationship between courses and
their prerequisites. The five universities not included did
not have prerequisite relationships in their collected data,

Prereqµ Prereqσ

GMU 0.324 0.211
AU 0.278 0.134

KSU 0.273 0.213
Utah 0.257 0.249
UTK 0.201 0.256

Table 4.1: Level of conceptual overlap between courses and
their prerequisites in five universities. Prereqµ is the average
level of conceptual overlap between prerequisites, Prereqσ
is the standard deviation.

and thus this analysis could not be performed.

4.2 Case Study: Topics In Computer Science

4.2.1 Ethics In Computer Science

Computer Science is a wide ranging field, with a number of
disparate subfields — according to the ACM, there are 18
distinct Knowledge Areas [2]. At any given university, the
Computer Science department will, ideally, cover all or most
of these areas. One particular area covered by most univer-
sities in this study is “Social Issues and Professional Prac-
tice”. A clear example of a course within this Knowledge Area
is any course in computing and ethics. Take, for example,
Kansas State’s CIS 415 “Ethics and Computing Technology.”
The description is brief and to the point, focusing on com-
puting ethics within a professional context. The only topic
inferred for this course, at 64% proportion, includes the
terms “ethics”, “computer”, “profession”, “issue”, and “social”
at high frequency. Searching for other courses that teach to
the same topic yields 30 courses across nine universities (ev-
ery university in the study except for Rensselaer Polytechnic).
These courses have titles like “Computer Ethics and Society”
(GMU CS 105) and “Ethics in Computing” (LSU CSC 1200).
This demonstrates the ability of our tool to not only auto-
matically infer relevant concepts from a course description,
but to match related courses across universities.

4.2.2 Artificial Intelligence

Another major topic within computer science is the study of
Artificial Intelligence (AI). AI itself contains a great number
of subfields and areas of specialization, but it is defined in
ACM Knowledge Area “Intelligent Systems” as “the study
of solutions for problems that are difficult or impractical
to solve with traditional methods” [2]. Consider Portland
State’s CS 441 “Artificial Intelligence.” Its course description
is highly typical of AI courses included in this study: brief
and to the point, it lists a number of subfields within AI
that will be touched upon in the course. The only topic
inferred for this course, at 86% proportion, includes the
terms “intelligence”, “knowledge”, “artificial”, and “agent” at
high frequencies. Every other university in this study also
contains at least one course which teaches to this topic in
some proportion. George Mason’s CS 480 “Introduction to
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Artificial Intelligence”, Louisiana State’s CSC 4444 “Artificial
Intelligence” and University of Utah’s CS 6380 “Multi-Agent
Systems” to name a few. Indeed, many of these courses share
very similar descriptions.

However, one of the most unique examples of a course
with this topic is the University of Tennessee’s COSC 420
“Biologically-Inspired Computation.” The title alone might
not suggest that this is an AI based class, and indeed it is
not entirely AI. The course description talks about swarm
intelligences, multi-agent systems, and other biomimetic
computational systems. While the common AI topic dis-
cussed prior is inferred at 42%, two other topics, one with
terms from biology and one with terms from neural net-
works, a subfield of AI, appear at proportions 24% and 17%
respectively. UTK’s COSC 420 is an excellent example of
LDA’s ability to infer many possibly unrelated topics in a
mixture within a document in order to represent the full
nature of the text.

4.3 Case Study: Comparing Departments

4.3.1 George Mason vs Stanford

While institutions generally cover a wide range of topics,
there are always certain topics that cannot be or are not
taught. Take for example George Mason University and Stan-
ford University. The two computer science departments
share a lot in common. Of 68 total topics covered between
the two, 41 are common to both while only 14 are unique to
Stanford and 13 unique to George Mason. The shared topics
contain terms that directly relate to similar courses at each
school. For example “secure” and “network” are terms in
a topic taught in network security classes at both schools.
However, a topic containing “linux”, “unix”, “lab” appears
unique to Stanford, covered by CS 1U “Practical Unix”, a
course that does not exist at George Mason. Similarly, a
topic containing “parallel” and “algorithm” appears unique
to George Mason. The course GMU CS 683 “Parallel Algo-
rithms” teaches to this topic, with no analogous course at
Stanford.

By analyzing the set of unique and shared topics within
two departments, simple coefficients can be computed to
quantify the degree of similarity. The Jaccard coefficient is
computed as the most basic representation of departmental
similarity, along with Euclidean and cosine similarity met-
rics discussed in Section 3.4.3. A pairwise comparison of
the universities in this study is presented in Figure 4.1. In
this figure, darker shades of blue represent a higher degree
of similarity. Also see Table 4.2 for the specific computed
similarity values.

4.3.2 George Mason vs ACM EC

The EC provide a wide view of different courses from insti-
tutions around the world. If we assume the EC to compose
a single, hypothetical university’s CS department, we can
compare existing departments against it in the same fashion
as was used in Section 4.3.1. Take George Mason University,

for example, to compare against the EC. Both departments
share a great deal in common, with 38 overlapping topics.
There are additionally not that many topics unique to the
two departments, with 14 unique to the EC and 18 unique
to GMU. A number of interesting artifacts appear, however,
upon closer inspection.

Two topics unique to the EC include the terms “moral”
and “religious”, one each. Inspecting these topics reveals two
members of the EC with the titles “Ethics & the Information
Age” and “Technology, Ethics, and Global Society”. Both of
these courses teach ethics in computation, but from a vastly
different perspective than the ethics course at George Mason.
These two EC ethics courses include professional ethics, but
also moral, religious, and social philosophies of ethical be-
havior, while the George Mason ethics courses (e.g., CS 105
“Computer Ethics and Society”) only discuss professional
ethics. This is an important yet subtle distinction to make,
which might be overlooked by simply considering course
titles.

Another unique topic to the EC includes the terms “de-
sign”, “circuit”, and “digital”. The courses which teach to this
topic, across institutions, are primarily digital design and
logic courses. Inspecting the George Mason CS curriculum
reveals that an analogous course is required within the CS
degree, ECE 301 “Digital Electronics”, but is not contained
within the CS department, unlike some other universities.
This particular artifact appears because the scope of our
data sets include only CS departments. We make the as-
sumption that necessary courses to the CS program at an
institution will fall under the heading of Computer Science,
which in this case is not true.

Note that included in Figure 4.1 are the ACM EC. Each
course from the EC was entered into the dataset along with
every other university course, and had topics inferred by
LDA in the same manner. In this way the EC act as control
courses with a ground truth label set. High similarity to
the EC indicates a high degree of compliance with ACM
standards.

5 Discussion

The results of this study are promising. Exploratory K-Means
clustering resulted in clusters with a high level of complete-
ness. Even superficial manual analysis of clusters indicated
that the collected data were being appropriately grouped.
Similar findings were encountered after the application of
LDA topic modeling.

Inferred topics generally fall into one of two categories
for each course. The first category of topic includes rele-
vant terms and keywords found in the course description.
A highly specialized course in a particular subfield might
contain a set of these topics that relate to keywords from
within the specific domain of the course. The second cat-
egory of topic includes more generic words common to a
large number of courses. Topics in this category often relate
to concepts common across courses, e.g., student research

7



ACM EC AU GMU KSU LSU PDX RPI SC Stanford Utah UTK

ACM EC 1.000 0.420 0.433 0.426 0.407 0.386 0.433 0.443 0.366 0.427 0.373
AU 0.420 1.000 0.339 0.480 0.522 0.342 0.431 0.500 0.377 0.382 0.462
GMU 0.433 0.339 1.000 0.500 0.532 0.460 0.463 0.471 0.603 0.545 0.439
KSU 0.426 0.480 0.500 1.000 0.623 0.494 0.561 0.655 0.493 0.528 0.587
LSU 0.407 0.522 0.532 0.623 1.000 0.462 0.491 0.554 0.524 0.514 0.500
PDX 0.386 0.342 0.460 0.494 0.462 1.000 0.427 0.469 0.488 0.586 0.347
RPI 0.433 0.431 0.463 0.561 0.491 0.427 1.000 0.525 0.547 0.535 0.532
SC 0.443 0.500 0.471 0.655 0.554 0.469 0.525 1.000 0.443 0.521 0.480
Stanford 0.366 0.377 0.603 0.493 0.524 0.488 0.547 0.443 1.000 0.600 0.407
Utah 0.427 0.382 0.545 0.528 0.514 0.586 0.535 0.521 0.600 1.000 0.409
UTK 0.373 0.462 0.439 0.587 0.500 0.347 0.532 0.480 0.407 0.409 1.000

Table 4.2: Pairwise similarity of CS departments computed as Jaccard index of department topic sets.
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Figure 4.1: Pairwise similarity of CS departments using the
Jaccard index. Darker shades indicate higher similarity. ACM
EC refers to the ACM Exemplar Courses (EC). See Table 4.2
for the specific recorded values.

or exam and project information.
Take, for example, a computer science course in ethics.

At George Mason University the senior level Computer Sci-
ence ethics course is CS 306. The primary topic inferred
for this course in a given run of LDA might look like “ethic,
comput, issu, profession, social, impact, privaci, digit, con-
text, technolog.” Additionally, the prerequisite course to CS
306, CS 105, shares this same topic. While the topic itself
is a frequency distribution over vocabulary, and does not
quantifiably evaluate to an “ethics” topic, manual inspec-
tion clearly shows that this topic involves ethocs and social
issues as they relate to technology professionals.

Our confidence in the applicability of LDA as a course
content inference system stems from the appearance of the
same or related topics within the same or related courses.
Inspecting the same course at different institutions results in
the same topics being inferred at each institution. Inspect-
ing prerequisite courses within the same institution illus-
trates the relationship between the courses by highlighting
conceptual overlap, i.e., the appearance of the same topic in
both course and prerequisite. As mentioned in Section 3.4.4,
third party course descriptions act as an additional evalu-
ative metric for this approach. A high level of consistency
is indicated by the same topics being inferred for the same
course at multiple institutions, related courses within the
same institution, and the third party benchmark course.

5.1 Limitations

We recognize that one of the limitations of our work is that
we are focused solely on the formal learning of students [6].
This is an artifact of the data used in the study. We believe
that the techniques we use can also be applied to better
understand learning in other settings if useful data exists.
Additionally, our methodology operates under the assump-
tion that course description data is accurate, up to date, and
descriptive. In truth, this is not always the case. Oftentimes
course descriptions do not fully describe the actual content
of what is taught in a course, or the course description might
only apply to some sections of a given course. It has even
been observed that some course descriptions are merely
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held as filler text until a later date, and do not provide any
useful information about the course. However, while these
circumstances lie outside of our control, we take measures
to prevent invalid course descriptions from entering the
dataset. The cleaning process described in Section 3.1 re-
moves descriptions that are unlikely to be valid based on
length and vocabulary size. It should be noted that this is
a general purpose technique which can also be applied to
intake other course related information, such as syllabi and
assignment data instead of course descriptions.

Another limitation of our approach is an inability to mean-
ingfully summarize or categorize inferred topics. While the
raw topics are used internally for comparison, they do not
provide an ideal interface for the end user. This limitation
stems from our use of LDA as the primary topic inference
tool. We propose a solution in the following Section 6.

6 Future Work

One of the major benefits and weaknesses of LDA is its un-
supervised nature. Beneficially, it allows for the extraction
of information from an entirely unknown dataset. In this
context, this flexibility allows its application to any number
of diverse academic departments. However, the main draw-
back of this characteristic is the lack of categorical informa-
tion for the inferred topics. While a topic can be understood
via manual inspection of its terms, LDA offers no single com-
prehensive label to summarize it. A possible solution to this
problem might involve a meta-analysis of inferred topics.
Each topic could be classified as one of a number of learn-
ing outcomes based on its composition and weighting in a
description. Mapping the learned topics onto a standard-
ized framework of learning outcomes [15] would allow for
immediate integration of the extracted course concepts into
existing academic evaluative frameworks based on learning
outcome literature.

As educators who often have deficient resources to im-
prove their pedagogy [7] look towards online or virtual mech-
anisms to support them, the system we have designed can
be very useful. Based on ideas discussed by Brown and
Kölling [7], one potential we see for future work is the inte-
gration of our system with an existing virtual community of
CS educators, or the creation of community features around
the system we have designed. For instance, we can make
it easier for educators to share or request resources from
others or to learn more about why certain content is or is
not covered in specific courses. As more educators provide
data to the system, the quality of results will benefit as well.

We also foresee that in the future we will be able to com-
bine course related data with specific course assignments
(through learning-management system (LMS) data), thereby
providing a better picture of the kinds of experiences stu-
dents can hope to receive in any given course. This com-
bination of data will also allow a better examination of the
effects of different teaching strategies on students’ learn-
ing [18, 13, 3]. For instance, we will be able to better under-

stand the role of pedagogical techniques, such as problem-
based and service-learning, on student outcomes. By align-
ing with LMS data, we will also be able to learn more about
how students perform on different assignments related to
a specific competency or course content. In the future we
also plan to combine this data with data about student de-
mographics and that can help provide a better picture of
performance across gender and race [12, 17]. This can be
useful in designing more supportive pedagogical elements.

7 Conclusion

Programs of study in higher education differ widely between
departments and universities. Because of these discrepan-
cies, program evaluation methodologies are employed with
the goal of understanding the contents of a program of study
within a standardized framework. However, this process
generally requires manual inspection by a domain expert to
extract information from large quantities of course descrip-
tions. Automating the digestion and processing of these
descriptions will greatly reduce the time and effort required.
Probabilistic topic modeling presents a statistical machine
learning method to automatically extract the core concepts
covered by a course description. Latent Dirichlet alloca-
tion (LDA) results in a feasible breakdown of textual descrip-
tions into component concepts. This work has presented
a software framework for the ingestion and processing of
large volumes of textual course descriptions. Additionally, a
web-based visualization tool has been developed to present
inferred topics for university programs of study in an acces-
sible format.
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