Problem Statement

Computer Science education is an increasingly important field of growth at many universities. As departments grow and change, it becomes necessary to automate the evaluation and comparison process. However, much of the published information about departments is non-standard, natural language text, not easily processed automatically.

Objective

Develop an automated system to infer topics from university course descriptions and provide analysis at the course and departmental levels.

Latent Dirichlet Allocation

Latent Dirichlet Allocation or LDA is a highly effective topic modeling algorithm. Assumes a generative approach to topics, allowing multiple topics to mix within a single document at learned proportions. Requires only the number of topics as input.

$w_{1:D}$

Posterior probability of topics. Equation from Blei 2003 [2].

George Mason University 2015

Unsupervised Academic Curricular Evaluation Through Topic Modeling

Jean Michel Rouly¹, Huzefa Rangwala¹, Aditya Johri² ¹Computer Science, ²Information Sciences & Technology

University Dataset		Sample Inferred Topics	
University	Course Count	removed and aggressively stemmed Once ID	
American University	32	when the informed tension look concerts in a like this	
George Mason University	145	run, the inferred topics look something like this	
Kansas State University	83		
Louisiana State University	59	system, softwar, design, embed, time, real, architectur, interfac,	
Portland State University	190		
Rensselaer Polytechnic Institute	61	web, develop, design, transform, process, technolog, applic,	
University of South Carolina	64	parallel, program, comput, algorithm, model, share, perform,	
Stanford University	69		
University of Utah	142	model, system, orient, object, concept, implement, method,	
University of Tennessee, Knoxville	29	method equat problem numer differenti linear includ system	
ACM Exemplar Courses (EC)	68		
omputer Science Departments from 10 Universities		tunction, program, higher, order, recurs, write, basic, languag,	

Visualization Tool: Trajectory

Trajectory is a web-based visualization and analytics platform developed as the final module of this project. Users can explore the inferred topics and automatically perform comparisons and evaluations of university departments. The tool is available at trajectory.rouly.net and github.com/jrouly/trajectory

STATISTICS

GMU Computer Science vs. Stanford Computer Science

Sizes

Similarity

Jaccard Index [0, 1]: 0.621 Euclidean Distance: 5.000

Cosine Similarity [-1, 1]: 0.232

TOPICS IN GMU CS (9)

student, assign, respons, question, conduct, cloud, paper, studi, answer, univers (link) activ, guidanc, singl, simultan, curricula, elect, action, consist, recipi, agreement (link)

COMMON TOPICS (41)

Courses in GMU Computer Science: 106

Courses in Stanford Computer Science: 69

program, problem, data, comput, al structur, introduct, engin, languag (project, team, final, experi, design, signific, major, propos (link)

Departmental comparison screenshot from Trajectory. Comparing George Mason University and Stanf

Sample Inferred Topics

Descriptions are cleaned, English stop words emoved, and aggressively stemmed. Once LDA is un, the inferred topics look something like this.

system, softwar, design, embed, time, real, architectur, interfac, ... web, develop, design, transform, process, technolog, applic, ... parallel, program, comput, algorithm, model, share, perform, model, system, orient, object, concept, implement, method, ... method, equat, problem, numer, differenti, linear, includ, system, ...

solv, ftwar, c CS 105 c S 211 O CS 112 graduat, work, student, requir, meet, extra, time, honor, school, depart (link) student, comput, work, research, program, complet qualifi, engag, educ, lab (link) C S 105 C S 112		TOPICS IN STANFORD CS (16)
ftwar, student, comput, work, research, program, complet qualifi, engag, educ, lab (link) ersity. O CS 105	ithm, solv,	graduat, work, student, requir, meet, extra, time, honor, school, depart (link)
ersity. • CS 105 • CS 112	ur, softwar,	student, comput, work, research, program, complet, qualifi, engag, educ, lab (link)
• CS 105	University.	
CS 211 O CS 112	O CS 105	
O CS 112		
O CS 112		
	CS 211 🔘	O CS 112

ACM EC GMU

Stanford Utah

Pairwise similarity of 10 university CS departments. Similarity value is the Jaccard index of the set of topics taught in courses at each department. Darker shades are more similar.

	$\operatorname{Prereq}_{\mu}$	$\operatorname{Prereq}_{\sigma}$
GMU	0.324	0.211
AU	0.278	0.134
KSU	0.273	0.213
Utah	0.257	0.249
UTK	0.201	0.256

Amount of conceptual overlap between courses and their prerequisites. Prereq_u is average amount of overlap, Prereq_{σ} is standard deviation. Conceptual overlap calculated by average distance between weighted topicvectors of courses and their prerequisites (see paper for details).

Future Work

One of the limitations of LDA is its inability to summarize topics with brief, natural language phrases or labels. We hope to address this shortcoming, perhaps by integrating our inferred topics within an existing framework of learning outcomes, specifically Bloom's Taxonomy. [3]

Additional work expanding the study to a larger dataset of universities needs to be completed. Including different types of data, such as job descriptions, might allow a continuous analysis of concepts introduced at the university level and carried into industry as expected skills.

References

[1] D. M. Blei. Probabilistic topic models. *Commun. ACM*, 55(4):77-84, Apr. 2012.

[2] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. J. Mach. Learn. Res., 3:993-1022, Mar. 2003.

[3] D. R. Krathwohl. A revision of bloom's taxonomy: An overview. *Theory Into Practice*, 41 (4):212-218, 2002.

MALLET and the MALLET logo are trademarks of the University of Massachusetts, Amherst. Python and the Python logo are trademarks of the Python Software Foundation. Used with permission. No endorsement by the University of Massachusetts, Amherst, or the Python Software Foundation is implied by the use of these marks.